Задать вопрос

Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле первым стрелком равна 0,6, вторым - 0,8. Найти вероятность того, что при одном залпе в мишень попадут (а) только один стрелок (б) хотя бы один стрелок (в) оба стрелка

+1
Ответы (1)
  1. 16 октября, 06:29
    0
    1) Вероятность того, что попадет только один стрелок = 0.6 + 0.8 = 1.4 (когда нам надо узнать вероятность попадания или первого или второго, то делается действие прибавления).

    2) Вероятность того, что попадут оба стрелка = 0.6 * 0.8 = 4.8 (когда нам надо узнать вероятность попадания и первым и вторым, то делается действие умножения).

    Ответ: 1.4, 4.8.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле первым стрелком равна 0,6, вторым - 0,8. Найти ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Два стрелка стреляют в мишень. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго-0,8. Найти вероятность того, что при одном залпе в мишень попадает только один стрелок.
Ответы (1)
Три стрелка попадают в мишень с вероятностями 0,9; 0,2; 0,1. Стрелки производят залп по мишени. Найдите вероятности событий:A1 - только 2 - ой стрелок попал в мишень; A2 - только 3 - ий стрелок не попал в мишень;
Ответы (1)
Два стрелка стреляют в одну и ту же цель, причем вероятность поражения цели первым стрелком 0,8, а вторым стрелком - 0,6. Оба стрелка стреляют 1 раз независимо друг от друга. Какова вероятность, что цель будет поражена только первым из них?
Ответы (1)
Два стрелка стреляют по мишени по одному разу. вероятность попадания обоих - 0.54, вероятность того, что оба промахнутся - 0.04, какова вероятность попадания в мишень, каждым стрелком при одном выстреле?
Ответы (1)
Два стрелка стреляют поочередно до первого попадания в мишень, делая не больше двух выстрелов каждый. Вероятность попадания в мишень при первом выстреле 0,1, при каждом следующем выстреле она увеличивается на 0,1.
Ответы (1)