Задать вопрос

найдите сумму бесконечной геометрической прогрессии (вn) если в1=12 g=одна третья

+5
Ответы (1)
  1. 30 января, 23:30
    0
    Сумма бесконечно убывающей геометрической прогрессии равна

    S = b1 / (1 - q),

    где! q! < 1,

    Дано:

    b1 = 12;

    q = 1 / 3;

    Находим сумму бесконечно убывающей геометрической прогрессии:

    S = 12 / (1 - 1 / 3) = 12 / (2 / 3) = 36 / 2 = 18;

    Ответ : S = 18.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «найдите сумму бесконечной геометрической прогрессии (вn) если в1=12 g=одна третья ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
1. Найти а6 геометрической прогрессии (ап), если а1=0,81; q = - 1/8. 2. В геометрической прогрессии (ап) а1=6, q=2. Найти S7. 3. Найти сумму бесконечной геометрической прогрессии: - 40, 20, - 10, ... 4.
Ответы (1)
1) В геометрической прогрессии a1=-24 и q=0,5. Найдите a9 геометрической прогрессии. 2) Найдите сумму бесконечной геометрической прогрессии 36; -18; 9; ...
Ответы (1)
2&#61616;. Первый член геометрической прогрессии равен 2, а знаменатель равен 3. Найдите сумму шести первых членов этой прогрессии. 3. Найдите сумму бесконечной геометрической прогрессии: 24; - 12; 6; ...
Ответы (1)
1) Сумма первых пяти членов геометрической прогрессии равна 62. Известно что пятый, восьмой, одинадцатый члены этой прогрессии различны и являются соответственно первым, вторым, десятым членами арифметической прогрессии.
Ответы (1)
1) найдите сумму геометрической прогрессии - 16; 8; -4; ... 2) сумма геометрической прогрессии (Bn) равна 84, знаменатель прогрессии равен 1/4. Найдите первый член прогрессии.
Ответы (1)