Задать вопрос

Найти наибольшее значение функции y=x^-1 (гипербола), на отрезке x : [-3; -1]

+4
Ответы (1)
  1. На отрезке [ - 3; - 1] гипербола y = x^ ( - 1) непрерывна и убывает, следовательно, наибольшее значение функции достигается на левом крае промежутка, то есть, при х = - 3. Вычислим значение функции в этой точке:

    у ( - 3) = ( - 3) ^ ( - 1) = - 1/3.

    Ответ: - 1/3.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найти наибольшее значение функции y=x^-1 (гипербола), на отрезке x : [-3; -1] ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
1) найти стационарные точки функции: 1) f (x) = x + 4/x и среди них указать точку максимума 2) f (x) = 9x + 1/x и среди них указать точку минимума 2) Найти наибольшее и наименьшее значение функции 1) f (x) = 2/x+1 + x/2 на отрезке [0; 2;
Ответы (1)
1. Известно, что f' (x) = x^3-5x^2/2-3x/2. В каких точках необходимо вычислить значение функции f (x), чтобы найти её наибольшее и наименьшее значение на отрезке [-5/2; 1/2]? 2.
Ответы (1)
Пусть А - наибольшее значение функции у = х^2 на отрезке [-2; 1 ], а В - наибольшее значение функции у=х^2 на отрезке [-1; 2[. найдите А-В. ^ - это степень.
Ответы (1)
Дана функция f (x) = 3x - 3 а) найти наибольшее и наименьшее значение функции на отрезке [0; 2] б) на каком отрезке функция принимает наибольшее значение, равное 25, наименьшее значение, равное 1.
Ответы (1)
1. Найдите наибольшее значение функции f (x) = - x² + 4x + 21 2. Найдите наименьшее значение функции g (x) = x²+4x - 32 3. Найдите наибольшее значение функции y (x) = ln (e² - x²) на отрезке [1; 1]
Ответы (1)