Задать вопрос

Упрастить выражение sin (2x+4 П) - 2sin (x+П) * cos (x-П)

+2
Ответы (1)
  1. 7 июля, 12:25
    0
    Упростим выражение sin (2 * x + 4 * П) - 2 * sin (x + П) * cos (x - П) используя формулы приведения:

    1) sin (2 * pi + a) = sin a;

    2) sin (pi + a) = - sin a;

    3) cos (pi - a) = - cos a;

    4) cos (2 * pi + a) = cos a;

    Тогда получаем:

    sin (2 * x + 4 * П) - 2 * sin (x + П) * cos (x - П) = sin (2 * (x + 2 * П)) - 2 * sin (x + П) * cos ( - ( - x + П)) = 2 * sin (x + 2 * П) * cos (2 * pi + x) - 2 * sin (x + П) * cos (pi - x) = 2 * sin x * cos x - 2 * ( - sin x) * ( - cos x) = 2 * sin x * cos x - 2 * sin x * cos x = sin (2 * x) - cos (2 * x) = 0.

    Ответ: sin (2 * x + 4 * П) - 2 * sin (x + П) * cos (x - П) = 0.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Упрастить выражение sin (2x+4 П) - 2sin (x+П) * cos (x-П) ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы