Задать вопрос

Биссектриса СК угла ВСD параллелограмма ABCD делит сторону AD на отрезки АК = 3 и КD = 5. Найдите периметр этого параллелограмма

+2
Ответы (1)
  1. 24 февраля, 09:50
    0
    1. Биссектриса СК разделяет параллелограмм на две геометрические фигуры. Одна из них -

    треугольник СДК, который, согласно свойствам параллелограмма, является

    равнобедренным. Следовательно, ДК = СД = 5 единиц измерения.

    2. АД = 3 + 5 = 8 единиц измерения.

    3. С учётом того, что согласно свойствам параллелограмма, стороны находящиеся напротив друг

    друга (противолежащие), равны, периметр (Р) этой геометрической фигуры рассчитывается по

    формуле:

    Р = 2 АД + 2 СД) = 2 х 8 + 2 х 5 = 26 единиц измерения.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Биссектриса СК угла ВСD параллелограмма ABCD делит сторону AD на отрезки АК = 3 и КD = 5. Найдите периметр этого параллелограмма ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
В прямоугольнике биссектриса прямого угла делит сторону на отрезки 42 см и 14 см. На какие отрезки эта биссектриса делит диагональ пополам?
Ответы (1)
Периметр параллелограмма 144 см, биссектриса острого угла делит его большую сторону на отрезки, длины которых относятся как 3:6, считая от вершины тупого угла. Найдите меньшую строну параллелограмма.
Ответы (1)
Тупой угол параллелограмма равен 120°. Высота параллелограмма, проведенная из этого угла, равняется 6√3 см и делит сторону параллелограмма в соотношении 1:2, если считать от вершины острого угла. Найдите периметр параллелограмма.
Ответы (1)
Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении 1:3, считая от вершины острого угла. Найдите большую сторону параллелограмма, если его периметр равен 60
Ответы (1)
Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении 5:8, считая от вершины острого угла. Найдите большую сторону параллелограмма, если его периметр равен 72
Ответы (1)