Задать вопрос

Два сварщика, работая вместе, могут выполнить задание за 30 часов. За сколько часов сможет выполнить это задание каждый сварщик, если известно, что первому на выполнение всей работы потребуется времени на 11 часов больше, чем второму?

+5
Ответы (1)
  1. 13 июня, 23:30
    0
    Для решения задачи составим уравнение, в котором время необходимое первому сварщику запишем как х.

    Поскольку второй работает на 11 часов быстрее, ему понадобится: х - 11 часов.

    В таком случае, первый за 1 час выполнит: 1 / х часть всей работы, а второй 1 / (х - 11).

    Получим уравнение:

    30 * (1 / х + 1 / х - 11) = 1 (1 - вся работа).

    30 * 2 * х - 11 = х^2 - 11 * х.

    60 * х - 330 = х^2 - 11 * х.

    х^2 + 71 * х - 330 = 0.

    Д = 61^2.

    х1 = 66 часов (Потребуется первому сварщику.)

    х - 11 = 66 - 11 = 55 часов (потребуется второму сварщику.)
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Два сварщика, работая вместе, могут выполнить задание за 30 часов. За сколько часов сможет выполнить это задание каждый сварщик, если ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Два сварщика, работая вместе, могут выполнить задание за 30 ч. За сколько часов сможет выполнить это задание каждый сварщик, если известно, что первому потребуется на 11 ч больше
Ответы (1)
Решить нераверство: 13 (5 х - 1) - 15 (4 х + 2) < 0 И задачу: Два сварщика, работая вместе, могут выполнить задание за 30 ч.
Ответы (1)
два токаря выполнили задание за 15 дней, причем второй токарь присоединился к первому через 7 дней после начала работы. Известно что первому токарю на выполнение всей работы потребовалось на 7 дней меньше, чем второму.
Ответы (1)
Два строителя выложили стену из кирпичей за 14 дней, причем второй присоединился к первому через 3 дня после начала работы. Известно, что первому строителю на выполнение всей работы потребовалось бы на 6 дней больше, чем второму.
Ответы (1)
Два комбайна, работая совместно, могут выполнить задание за 6 часов. первый комбайн, работая один, может выполнить это задание на 5 ч скорее, чем второй комбайн. за сколько времени может выполнить задание первый комбайн, работая один?
Ответы (1)