Задать вопрос

От города А до города Б автомобиль проехал за 4 часа. Какое расстояние между городами, если на обратном пути он увеличил скорость на 20 км/ч и преодолел этот путь за 3 часа?

+1
Ответы (2)
  1. 15 января, 01:47
    0
    Для решения данного задания нужно составить уравнение.

    Вычислим скорость движения

    Расстояние, или путь это пространство, разделяющее два объекта. Скорость это физическая величина, которая показывает, какое расстояние объект пройдёт за время. Формула нахождения скорости: v = s / t. Формула нахождения расстояния - s = v*t, где:

    v - скорость. s - расстояние. t - время.

    Пусть скорость, с которой автомобиль преодолел расстояние за 4 часа равна х км/ч. Тогда скорость движения на обратном пути - (х + 20) км/ч. Зная, что на обратный путь автомобиль затратил 3 часа, составим уравнение.

    4 х = 3 * (х + 20);

    4 х = 3 х + 60;

    4 х - 3 х = 60;

    х = 60.

    Для того, чтобы решить данное уравнение мы раскрыли скобки. При раскрытии скобок, множитель перед скобками умножается на каждый член в скобках. После этого, мы переносим известные слагаемые в право, а неизвестные влево. При переносе слагаемого из одной части уравнения в другую необходимо поменять знак на противоположный. В полученном уравнении неизвестное число является множителем. Чтобы найти его значение мы произведение делим на известный множитель.

    Таким образом скорость движения равна 60 км/ч, а на обратном пути 20 + 60 = 80 км/ч.

    Вычислим расстояние

    Для того, чтобы вычислить чему равно расстояние между города мы должны скорость движения умножить на время. Расстояние равно произведению времени на скорость. s=v*t, где s - расстояние, v - скорость, t - время. Вычислим расстояние, зная, что автомобиль двигался со скоростью 60 км/ч 4 часа.

    s = 60 * 4 = 240 километров.

    Ответ: 240 километров.
  2. 15 января, 02:29
    0
    Примем скорость автомобиля равной х, тогда расстояние между городами - 4 · х

    или 3 · (х + 20).

    1. Составляем уравнение для определения неизвестного:

    4 · х = 3 · (х + 20),

    4 · х = 3 · х + 3 · 20,

    4 · х - 3 · х = 60,

    х = 60 км/ч.

    2. Найдем расстояние:

    4 · 60 = 240 км.

    3. Проверяем:

    3 · (60 + 20) = 3 · 80 = 240 км.

    Ответ: между городами А и Б - 240 км.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «От города А до города Б автомобиль проехал за 4 часа. Какое расстояние между городами, если на обратном пути он увеличил скорость на 20 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
От города а до города в автомобиль проехал за 4 часа. Какое растояние между городами, если на обратном пути он увеличил скорость на 20 км/ч и преодолел этот путь за 3 часа?
Ответы (1)
Автомобиль проехал расстояние между двумя городами за 7 часов. На обратном пути он увеличил скорость на 10 км/ч, поэтому преодолел это расстояние за 6 часов. Найти расстояние между городами.
Ответы (1)
Двигаясь в направлении ветра, одномоторный самолет преодолел расстояние между двумя городами за 5 ч 30 минут, а на обратном пути, двигаясь против ветра, то же расстояние он преодолел за 6 часов.
Ответы (1)
Весь путь между двумя городами автомобиль проехал за три дня. В первый день автомобиль проехал 7/20 всего пути, во второй день - 8/13 оставшегося пути, а за третий день автомобиль проехал на 72 км меньше, чем за первый день.
Ответы (1)
Путь из города в село автомобиль проехал за 4 часа на обратном пути он увеличил скорость на 20 километров в час и вернулся город за 3 часа. Найдите расстояние от города до села
Ответы (1)