Задать вопрос
21 ноября, 22:16

Из вершины равностороннего треугольника ABC вставлен перпендикуляр AD в плоскости треугольника найдите расстояние от точки D до сторон BC если AD=15 м ABC=8 м

+1
Ответы (1)
  1. 21 ноября, 23:37
    0
    Найдем высоту AM опущенную на сторону BC, так как треугольник ABC равносторонний по условию задачи:

    |AM| = √ (8^2 - (8/2) ^2 = √48 см.

    Тогда по теореме Пифагора искомое расстояние будет равно:

    |DM| = √ (|DA|^2 + |AM|^2) = √ (225 + 48) = √273 ≈ 16,5 см.

    Ответ: 16,5 см.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Из вершины равностороннего треугольника ABC вставлен перпендикуляр AD в плоскости треугольника найдите расстояние от точки D до сторон BC ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
1) Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 10 и 14. Площадь поверхности этого параллелепипеда равна 568. Найдите третье ребро, выходящее из той же вершины.
Ответы (1)
Стороны треугольника равны 4 см, 15 см и 13 см. Через вершину наименьшего угла к плоскости треугольника проведен перпендикуляр, и с его конца, что не принадлежит треугольнику, опущен перпендикуляр длиной 13 см на противоположную этому углу сторону.
Ответы (1)
Из некоторой точки проведены к плоскости перпендикуляр и наклонная угол между ними 45 градусов найти перпендикуляр и проекцию наклонной если наклонная 12 сантиметров
Ответы (1)
Из вершины А прямоугольного треугольника АВС угол С=90°, проведен перпендикуляр AD к его плоскости. Найти расстояние от точки D до катета BC. Если ВС=6 см, DB=10 см
Ответы (1)
Из точки М вне плоскости проведена к плоскости а наклонная равная 8 см. расстояние от точки М до плоскости а = 4 см. найти угол между наклонной и плоскостью
Ответы (1)