Задать вопрос

Найдите сумму 6 первых членов геометрической прогрессии (bn), если: b5=25, b7=9.

+3
Ответы (1)
  1. 1 апреля, 15:51
    0
    1. Для заданной геометрической прогрессии B (n) известны ее члены: B5 = 25, B7 = 9; 2. По формуле соотношения: B6 ² = B5 * B7 = 25 * 9 = 225 = (15) ²; B6 = 15; 3. Знаменатель прогрессии: q = B6 / B5 = 15 / 25 = 3/5; 4. Вычисляем первый член прогрессии: B1 = B5 / q^4 = 25 / (3 / 5) ^4 = 5^6/81; 5. Сумма первых шести членов прогрессии: S6 = (B1 * (q^6 - 1) / (q - 1) = (B1 * q^6 - B1) / (q - 1) = (B7 - B1) / (q - 1) = (9 - 5^6/81) / (3/5 - 1) = 14896 / 54 = 275, (851). Ответ: сумма первых 6 членов прогрессии B (n) равна 275, (851).
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдите сумму 6 первых членов геометрической прогрессии (bn), если: b5=25, b7=9. ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
1) Сумма первых пяти членов геометрической прогрессии равна 62. Известно что пятый, восьмой, одинадцатый члены этой прогрессии различны и являются соответственно первым, вторым, десятым членами арифметической прогрессии.
Ответы (1)
1. Известны два члена геометрической прогрессии: b4=2 и b6=200. Найдите ее первый член. 2. Сумма первых четырех членов геометрической прогрессии равна 45, знаменатель прогрессии равен 2. Найдите сумму первых восьми членов этой прогрессии.
Ответы (1)
1) найдите сумму пятидесяти первых чётных натуральных чисел. 2) первый член геометрической прогрессии равен 11, а знаменатель прогрессии равен 2. найдите сумму пяти первых членов этой прогрессии.
Ответы (1)
1. Дана геометрическая прогрессия. Найдите b9, если b1 = - 24, q = 0,5.2. Найдите сумму первых шести членов геометрической прогрессии, первый член которой равен - 9, а знаменатель равен - 2.3. Найдите сумму пяти первых членов прогрессии 36; - 18; 9 .
Ответы (1)
1. Найти сумму первых семи членов арифметической прогрессии, произведение третьего и пятого членов которой равно второму члену, а сумма первого и восьмого членов равна 2. 2. В геометрической прогрессии b5+b2-b4=66; b6+b3-b5=-132. Найти b15 3.
Ответы (1)