Задать вопрос

Найдите первый член и знаменатель геометрической прогрессии: b₂=7, b₃=-1

+1
Ответы (1)
  1. 19 июля, 09:28
    0
    Имеем геометрическую прогрессию b (1), b (2) = 7, b (3) = - 1, ...

    Так как b (3) = b (2) · q, то можем найти знаменатель q:

    q = b (3) / b (2) = - 1 / 7 = - 1/7.

    Теперь, так как b (2) = b (1) · q, то можем найти b (1):

    b (1) = b (2) / q = 7 / (-1/7) = 7 · (-7) = - 49.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдите первый член и знаменатель геометрической прогрессии: b₂=7, b₃=-1 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
1. Определите первый член геометрической прогрессии, если её знаменатель равен 4, а восьмой член равен 256. 2. Первый член геометрической прогрессии равен 2058, а четвёртый член равен 6. Найдите знаменатель этой прогрессии. 3.
Ответы (1)
1. найдите 25-ый член арифметической прогрессии - 3 - 6 2. найдите 10 - й член арифметической прогрессии 3 7 3. сумма первых шести членов арифметической прогрессии равна 9 разность между четвертым и вторым членами 0.4 найдите первый член прогрессии.
Ответы (1)
1) найдите сумму геометрической прогрессии - 16; 8; -4; ... 2) сумма геометрической прогрессии (Bn) равна 84, знаменатель прогрессии равен 1/4. Найдите первый член прогрессии.
Ответы (1)
1. первый член геометрической прогрессии равен 5, знаменатель - равен 3. Найти 4-ый член прогрессии. а) 5 в) 25 с) 135 2. Чему может быть равен знаменатель геометрической прогрессии, если b10=10, b12=40 а) 2 в) 3 с) 5
Ответы (1)
1) Сумма первых пяти членов геометрической прогрессии равна 62. Известно что пятый, восьмой, одинадцатый члены этой прогрессии различны и являются соответственно первым, вторым, десятым членами арифметической прогрессии.
Ответы (1)