Задать вопрос

Как составить формулу n-ного члена геометрической прогрессии если b1=3, q=2.

+3
Ответы (1)
  1. 8 февраля, 18:52
    0
    Формула n-го члена геометрической прогрессии выглядит следующим образом:

    bn = b₁ * qn - 1, где b1 - первый член прогрессии, q - ее знаменатель.

    Значит, при заданных значениях b₁ и q формулу n-го члена геометрической прогрессии запишем так:

    bn = 3 * 2n - 1.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Как составить формулу n-ного члена геометрической прогрессии если b1=3, q=2. ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
1. Известны 2 члена геометрической прогрессии: b2=2, b4=18. найдите седьмой членэтой прогрессии, если дано, что эта прогрессия является возрастающей. 2. Известны 2 члена геометрической прогрессии: b3=12, b4=24.
Ответы (1)
1) записать формулу n-го члена геометрической прогрессии 18; 9; 4,5; ... 2) записать первые четыре члена геометрической прогрессии если 1) b1=7, g=22) b1=8, g=1/23) b1=0,6, g=1/34) b1=12, g=3
Ответы (1)
1) Сумма первых пяти членов геометрической прогрессии равна 62. Известно что пятый, восьмой, одинадцатый члены этой прогрессии различны и являются соответственно первым, вторым, десятым членами арифметической прогрессии.
Ответы (1)
1. Известны два члена геометрической прогрессии: b4=2 и b6=200. Найдите ее первый член. 2. Сумма первых четырех членов геометрической прогрессии равна 45, знаменатель прогрессии равен 2. Найдите сумму первых восьми членов этой прогрессии.
Ответы (1)
1. Дана арифметическая прогрессия 8,2; 6,6; ... Найдите номер члена этой прогрессии, равного - 15,8. 2. Найдите сумму первых четырнадцати членов арифметической прогрессии, заданной формулой аn=5n-1 3.
Ответы (1)