Задать вопрос

Найдите значение производной функции f (x) в точке х0=0 а) f (x) = sin (x^3+x-п/4) б) f (x) = tg (x^2+п/6)

+4
Ответы (1)
  1. 19 марта, 16:58
    0
    Воспользовавшись основными формулами и правилами дифференцирования:

    (х^n) ' = n * х^ (n-1).

    (sin х) ' = соs х.

    (с * u) ' = с * u', где с - соnst.

    y = f (g (х)), y' = f'u (u) * g'х (х), где u = g (х).

    Таким образом, производная нашей данной функции будет следующая:

    f (х) ' = (sin^2 (2φ)) ' = (2φ) ' * (sin (2φ)) ' * (sin^2 (2φ)) ' = 2 * (соs (2φ) * 2sin (2φ) = 4 (соs 2φ) (sin 2φ).

    Вычислим значение нашей найденной производной в точке х0 = π / 6:

    f (π / 6) ' = 4 * (соs 2 * (π / 6)) * (sin 2 * (π / 6)) = 4 * (соs (π / 3)) * (sin (π / 3)) = 4 * (1 / 2) * (√3 / 2) = √3.

    Ответ: Производная нашей данной функции будет равна f (х) ' = 4 (соs 2φ) (sin 2φ), a f (π / 6) ' = √3.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдите значение производной функции f (x) в точке х0=0 а) f (x) = sin (x^3+x-п/4) б) f (x) = tg (x^2+п/6) ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Найдите значение производной функции в точке у = х2 - 5 х + 2 в точке х0=-2. Найдите значение производной функции в точке: у = 3cos⁡х - 〖 sin〗⁡х, х0 =. Найдите точки экстремума и определите их характер: у = 2 х3 - 10 х2 + 6 х. Часть С.
Ответы (1)
Вычислите: а) sin ( - П/4) + cos П/3 + cos ( - П/6) б) sin ( - 3 П/2) - cos (-П) + sin ( - 3 П/2), в) 2 sin 0 + 3 sin П/2 - 4 sin П/2 г) sin ( - П/2) - cos ( - П) + sin ( - 3 П/2) 0, д) cos П/6 cos П/4 cos П/3 cos П/2 * cos 2 П/3, е) sin П/6 sin П/4
Ответы (1)
1) cos 2x + cos 4x + cos (п - 3x) = 0; 2) sin 5x + sin 2x + sin 3x + sin 4x = 0; 3) cos 5x + cos 2x + cos 3x + cos 4x + 0; 4) 3 sin^{2} x - cos^{2} x = 0; 5) 3 sin^{2} x + 4 cos^{2} x - 13 sin x * cos x + 0;
Ответы (1)
Вычислите: а) sin 19° * cos 26° + sin 26° * cos19 ° б) sin 46° * cos 44° + cos 46° * sin 44° в) sin 61° * cos 31° - cos 61° * sin 31° г) sin 53° * cos 7° + cos 53° * sin (-7°) д) sin 15° * cos 75° + cos 15° * sin 75°
Ответы (1)
1. Найдите область определения функции f (x) = 1/sin x-0,5 2. Найдите множество значений функции: а) y=2sin x - 3; б) y=1-cos2 x. 3. Определите чётность функции: а) y=x+cos x; б) y=3x^2*sin x. 4.
Ответы (1)