Задать вопрос
30 августа, 01:57

Найдите сумму бесконечной геометрической прогрессии, если b1=8; b2=2; b3=0,5

+2
Ответы (1)
  1. 30 августа, 03:23
    0
    По условию задачи, первый член b1 данной бесконечной геометрической прогрессии равен 8, второй член b2 данной прогрессии равен 2.

    Используя определение геометрической прогрессии, находим знаменатель q данной прогрессии:

    q = b2 / b1 = 2 / 8 = 1/4.

    Для нахождения суммы данной прогрессии воспользуемся формулой суммы бесконечной геометрической прогрессии S = b1 / (1 - q).

    Подставляя в данную формулу значения b1 = 8 и q = 1/4, получаем:

    S = b1 / (1 - q) = 8 / (1 - 1/4) = 8 / (3/4) = 8 * 4 / 3 = 32/3 = 30 2/3.

    Ответ: сумма данной бесконечной геометрической прогрессии равна 30 2/3.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдите сумму бесконечной геометрической прогрессии, если b1=8; b2=2; b3=0,5 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
1. Найти а6 геометрической прогрессии (ап), если а1=0,81; q = - 1/8. 2. В геометрической прогрессии (ап) а1=6, q=2. Найти S7. 3. Найти сумму бесконечной геометрической прогрессии: - 40, 20, - 10, ... 4.
Ответы (1)
1) В геометрической прогрессии a1=-24 и q=0,5. Найдите a9 геометрической прогрессии. 2) Найдите сумму бесконечной геометрической прогрессии 36; -18; 9; ...
Ответы (1)
2. Первый член геометрической прогрессии равен 2, а знаменатель равен 3. Найдите сумму шести первых членов этой прогрессии. 3. Найдите сумму бесконечной геометрической прогрессии: 24; - 12; 6; ...
Ответы (1)
1) Сумма первых пяти членов геометрической прогрессии равна 62. Известно что пятый, восьмой, одинадцатый члены этой прогрессии различны и являются соответственно первым, вторым, десятым членами арифметической прогрессии.
Ответы (1)
1) найдите сумму геометрической прогрессии - 16; 8; -4; ... 2) сумма геометрической прогрессии (Bn) равна 84, знаменатель прогрессии равен 1/4. Найдите первый член прогрессии.
Ответы (1)