Задать вопрос

Решите арифметическую прогрессию a1=-4; d=2; s10-?

+1
Ответы (1)
  1. 6 июля, 05:34
    0
    Чтобы решить данную задачу, вспомним, что такое арифметическая прогрессия. Арифметическая прогрессия это такая последовательность чисел, в которой разность между последующим и предыдущим членами прогрессии остается неизменной. Эта неизменная разность называется разностью прогрессии. В данном случае разность d=2, a1=-4. Формула суммы n-первых членов арифметической прогрессии: Sn=2*a1 + (n-1) * d/2*n. Вычислим сумму первых 10 членов арифметической прогрессии.

    S10=2 * (-4) + (10-1) * 2/2*10 = (-8+9*2) / 2*10=10/2*10=5*10=50.

    Ответ: 50.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Решите арифметическую прогрессию a1=-4; d=2; s10-? ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Четыре числа образуют арифметическую прогрессию. Если к этим числам прибавить соответственно 1,2,11 и 44, то получим четыре числа, образующие геометрическую прогрессию. Найти числа арифметической прогрессии
Ответы (1)
Найдите трехзначное число, если цифры единиц, десятков и сотен в указанном порядке образуют арифметическую прогрессию, а цифры числа, меньшего данного на 10, в том же порядке образуют геометрическую прогрессию.
Ответы (1)
Три числа состовляют арифметическую прогрессию. Если первые два из них оставить без изменений, а к третему прибавить сумму двух первых то полученные числа составят геометрическую прогрессию. Найдите знаменатель этой геометрической прогрессии.
Ответы (1)
Три различных числа x y z образуют в указанном порядке геометрическую прогрессию, а числа х 2 у 3z образуют в указанном порядке арифметическую прогрессию. Найти знаменатель геометрической прогрессии
Ответы (1)
Числа 5 х-у, 2 х+3 у, х+2 у образуют арифметическую прогрессию, а числа (у+1) ^2, xy+1, (x-1) ^2 образуют геометрическую прогрессию. Найти х и у.
Ответы (1)