Задать вопрос

Напишите уравнение окружности с центром в точке А (-3; 2), проходящей через точку В (0; -2)

+4
Ответы (2)
  1. 13 июня, 12:32
    0
    Будем решать данную задачу по следующей схеме:

    используя формулу расстояния между двумя точками на координатной плоскости, найдем радиус данной окружности; зная центр данной окружности и ее радиус, запишем уравнение окружности; выполним проверку полученного результата, убедившись, что окружность проходит через точку В (0; -2).

    Решение задачи.

    Находим радиус данной окружности

    Согласно условию задачи, данная окружность должна проходить через току В с координатами (0; -2), а центр данной окружности находится в точке А с координатами (-3; 2).

    Следовательно, радиус данной окружности равен расстоянию между точками А и В.

    Для нахождения данного расстояния воспользуемся формулой расстояния между двумя точками А и B на координатной плоскости с координатами А (х₁; у₁) и B (х₂; у₂):

    |AB| = √ ((х₁ - х₂) ² + (у₁ - у₂) ²).

    В данном случае х₁ = - 3, у₁ = 2, х₂ = 0, у₂ = - 2.

    Подставляя данные значения в формулу расстояния между точками А и B, получаем:

    |AB| = √ ((-3 - 0) ² + (2 - (-2)) ²) = √ ((-3) ² + (2 + 2) ²) = √ (3² + 4²) = √ (9 + 16) = √25 = 5.

    Следовательно, радиус данной окружности равен 5.

    Записываем уравнение окружности

    Известно, что уравнение окружности радиуса R с центром в точке О (х₀; у₀) имеет следующий вид:

    (х - х₀) ² + (у - у₀) ² = R².

    Следовательно, можем записать уравнение окружности радиуса 5 с центром в точке В (0; -2):

    (х - 0) ² + (у - (-2)) ² = 5²,

    или после упрощения:

    х² + (у + 2) ² = 25.

    Проверка полученных результатов

    Убедимся, что окружность, заданная уравнением х² + (у + 2) ² = 25 проходит через точку А (-3; 2).

    Подставляя в уравнение окружности значения х = - 3 и у = 2, получаем:

    (-3) ² + (2 + 2) ² = 25;

    3² + 4² = 25;

    9 + 16 = 25;

    25 = 25.

    Мы получили верное тождество, следовательно, окружность, заданная уравнением х² + (у + 2) ² = 25 проходит через точку А (-3; 2).

    Ответ: искомое уравнение окружности х² + (у + 2) ² = 25.
  2. 13 июня, 13:53
    0
    Уравнение окружности находится по формуле:

    (х - а) ^2 + (y - b) ^2 = R^2, где где (a; b) - координаты центра окружности;

    R - радиус окружности.

    Найдем радиус, то есть длину отрезка АВ по формуле: AB = ((-3 - 0) ^2 + (2 - 2) ^2) = (-3) ^2 + 0^2 = 9.

    Следовательно запишем уравнение окружности с центром в точке А (-3; 2) и радиусом 9:

    (х - (-3)) ^2 + (y - 2) ^2 = 9^2;

    (х + 3) ^2 + (y - 2) ^2 = 81.

    Ответ: (х + 3) ^2 + (y - 2) ^2 = 81.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Напишите уравнение окружности с центром в точке А (-3; 2), проходящей через точку В (0; -2) ...» по предмету 📕 Геометрия, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы